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Nomenclature

1 frequency of the time-varying thermal boundary con-
ditions, Fig. 1

g gravitational acceleration

H height of the cavity, Fig. |

k thermal conductivity

L width of the cavity, Fig. |

n ratio of the horizontal wavenumber to the vertical
wavenumber

Pr  Prandtl number, v/y

gm time-mean heat flux per unit area, Fig. | and Fig. 2
Ra Rayleigh number based on the time-mean heat flux,
Ra = (xgqimH*)/ (kvy)

Ra; Rayleigh number based on the time-mean tem-
perature difference between the two sidewalls,
Ray = (@agAT,H")/(v)

T temperature

¢ time

v velocity

X, v horizontal and vertical coordinates, Fig. 1.

Greek symbols

a  volumetric expansion coefficient

AT temperature difference between hot and cold side-
walls, Fig. 2

* Corresponding author.

"Current address: Supercomputer Center, Systems Engin-
eering Research Institute, 1 Euen-dong, Yusong-gu, Taejon 305-
333, South Korea.

¢ amplitude of the periodic heat flux or the wall tem-
perature oscillation, Fig. 2

x thermal diffusivity

v kinematic viscosity

6 non-dimensional temperature, § =(T—T.)k/(gnH).

Subscripts

¢ cold sidewall

h hot sidewall

m time-mean value
r resonance.

1. Introduction

In recent years, attention has been given to natural
convection in an enclosure with time-periodic thermal
boundary conditions [1-7]. Apart from the relevance of
such boundary conditions to many practical applications
[3, 5], these problems pose physically attractive issues
mainly because of the possibility of resonance.

The pioneering work of Lage and Bejan [1] was the
first to demonstrate the presence of resonance in natural
convection. They considered a Boussinesq fluid in a
square cavity with a constant-temperature cold sidewall
and thermally-insulated horizontal endwalls. A periodic
heat flux varying in a square wave fashion was imposed
on the opposite sidewall (hereinafter referred to as model
1). Resonance was identified by the maximal ampli-
fication of fluctuations of the instantaneous Nusselt num-
ber, which was discernible at certain frequencies of forc-
ing. Antohe and Lage [2, 3, 5] extended the concept of
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resonance for porous systems. For a related problem
setup with the hot-wall temperature varying sinusoidally
with time (referred to as model II), Kwak and Hyun [6]
conducted comprehensive numerical simulations, which
illustrated the existence of resonance. The flow con-
figurations and the boundary conditions of models I and
1T are schematically depicted in Fig. 1.

More recently, Antohe and Lage [4] performed pre-
cision-controlled experiments for model . It was found
that for a high Rayleigh number, the time-mean heat
transfer coefficient was augmented by periodic heating as
compared with that obtained by steady heating with the
same time-mean heat flux. In model 11, Kwak er al. [7)
revealed that the wall-temperature oscillation with a large
amplitude causes an enhancement of the time-mean heat
transfer rate. It is noted that the maximum gain of the
time-mean heat transfer is obtained at the resonance fre-
quencies [4, 7].

The previous results suggest that a proper utilization
of resonance phenomenon may lead to an enhancement
of heat transfer rate. An important element in this en-
deavor is an accurate prediction of the resonance
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Fig. 1. (a) Schematic diagram of models | and II, and (b) the
thermal boundary conditions imposed on the hot sidewall.

frequency, since the occurrence of resonance is sensitive
to the forcing frequency. For model I, it was shown that
the flow resonates with the internal gravity wave modes
[6. 7]. Scaling analyses were also carried out to estimate
the resonance frequency of model I [1--3, 5]. However,
the predictions gave only the order of magnitude values.
In the present study, based on a brief overview of the
prior works [1-7], a prediction method to estimate the
resonance frequency for model [ is proposed.

2. Background review and strategy

Resonance describes a phenomenon in which the
eigenmodes are amplified substantially if the system is
periodically exposed to an external forcing with correct
eigenfrequencies. For a system with fixed eigen-
frequencies, the occurrence of resonance is largely inde-
pendent of the amplitude of external forcing. The pre-
ceding works [3, 7] are supportive to this argument: in
both models, the resonance frequency, f,, is insensitive to
the amplitude of the periodic thermal boundary
conditions, ¢.

The above considerations imply that f; can be predicted
by simply analyzing the solutions for the corresponding
non-oscillating case with the same time-mean flux or wall
temperature, ie., ¢ = 0 (referred to as the basic state).
This approach reduces considerable computational
efforts required for searching for £, by full numerical
simulations covering a broad range of forcing frequency.
This strategy was previously adopted in the earlier studies
[1.6]. The influence of ¢ on f,, although minor, can also be
assessed by scrutinizing the time-mean solution averaged
over 4 cycle [7] or the upper and lower solutions with the
boundary conditions ¢” = ¢, (1 +¢) [3].

In this study, the basic state solutions are used to
estimate the resonance frequency. To this end, numerical
solutions to the Navier-Stokes equations were obtained
for the basic state solutions. A finite-volume procedure
was employed, and the method in detail can be found in
Kwak and Hyun [6]. (82 x 62) grid points were deployed
for all computations.

Here, it is worth pointing out that the occurrence of
resonance does not depend on the kind of external forc-
ing. It is stressed that the difference between models | and
11 is only the type of thermal forcing. The fundamental
physics of natural convection with a horizontal heat flux
(model I) is qualitatively similar to those with a hori-
zontal temperature difference (model 11). There exists an
analogy between these two problems [1-3]. The rep-
resentative plots showing the flow patterns and tem-
perature fields of the basic states of the two models are
illustrated in Fig. 2, which exhibits similarities. This indi-
cates that the resonance frequency of both models I and
IT may be predicted based on a similar physical ground.
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Fig. 2. (a) Flow patterns and (b) isotherms of the basic-state
solutions of model I (Ra= 105, Pr=0.7) and model 11
(Rar = 107, Pr=0.7).

3. Prediction of the resonance frequency

Lage and Bejan [1] conducted a heuristic scale analysis,
introducing the concept of the rotation of a fluid wheel.
Resonance is to occur if the period of the cyclic heat flux
coincides with the time duration over which the effects of
cyclic heating rotate through the full cavity. The fre-
quency of rotation of a fluid wheel was expressed as

v
TAL+HY
The baseline idea is physically reasonable, and the task
is to select a proper scale for v.

Subsequently. Lage and Bejan [1] employed the longi-
tudinal velocity in the vertical boundary layer as a scale
for . For model I, this velocity can be scaled as [1]:

~ _l_ ___R_a___'lz_i R(l 45"1:«I'.’.
v H[g(Pr) H“J _HKﬁ(Pr)) H] 2

where 6, = (L/H)[Ra/E(Pr)]™'5, E(Pr) =1 for Pr>1
and E(Pr) = 1/Pr for Pr < 1.

Antohe and Lage [3] derived a scaling relationship to
estimate v from the momentum equations and heat bal-
ance in the vertical boundary layers. For model 1. this is

J (N

N

2 ! . X = -
4 (l+m>[]+P)S(P))] ~ ’;[ER(IPIS(PI)(),,. (3)

The scalings in equations (2) and (3) are based on the
velocities in the vertical boundary layers. The implication
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is that the principal transport of the effects of periodic
sidewall heating is accomplished by convective currents.

On the other hand, in the resonant cases of model 11,
the maximal fluctuations of flow and periodic tilting of
isotherms were observed mainly in the interior, and the
numerically-acquired resonance frequencies were in close
agreement with the frequencies of internal gravity wave
modes [6, 7]. These signify that the effects of periodic
boundary conditions are delivered by the propagating
modes of internal gravity waves. The afore-mentioned
similarity between the two models, in particular, the
stably-stratified temperature distribution in the interior,
suggests that the resonance frequency of model 1 is also
associated with the internal gravity wave modes.

The frequency of internal wave oscillation of an
enclosed Boussinesq fluid can be deduced as [8]

1 oT 1 12

e "
2n| 7 Oy (H/L)+n*(L/H)

where n is the ratio of the horizontal wavenumber to the

vertical wavenumber. For model 1 with H/L =1, the

frequency of the fundamental mode (n = 1) becomes

a N2
=% V2 (RaPrf;'Q H) , (5)
H> 4n cy

In order to assess d6/7y, the method of Kwak et al. [6]
is adopted. For all the sets of Ra and Pr examined by
Lage and Bejan [1], the profiles of & at the vertical plane
(x = L/2) of the basic-state solutions are shown in Fig.
3. For Pr = 0.01, since no steady solutions were found,
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Fig. 3. Profiles of the temperature of the basic-state solutions
(# = 0) at the vertical plane (x = L/2) for model 1. O, Ra = 10°,
Pr=70.0 Ra=10 Pr=70; A, Ra=10°, Pr=70: @,
Ra=10° Pr=07; B, Ra=10". Pr=0.7; A, Ra= 10",
Pr=07:4,Ra=10° Pr=10.01:* Ra= 10", Pr =00l.
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the time-averaged solutions at large times were plotted.
The values of 08/cy were evaluated by a linear fitting of
temperature profiles near the geometric center, i.e., in the
range 0.2 < y/H < 0.8.

The predicted values of the resonance frequency, based
on the above two different approaches, are compared in
Table 1. The prediction by equation (5), in general,
appears to give a better agreement with the numerical
results of Lage and Bejan [1] than those by equations
(1)-(3). For Pr=0.01, considerable discrepancies are
evident. A plausible explanation is that the pronounced
inertia effects for low Pr produce different types of waves
which would be more dominant than the internal gravity
waves. However, the results for Pr =0.7 and Pr = 7.0
give credence to the assertion that the resonance fre-
quency is related primarily to the internal gravity wave
oscillations. The slight differences between the estimated
values of f, and those of the detailed numerical com-
putations [1] are attributable to the uncertainty in esti-
mating the frequency of internal gravity waves, i.e., in
determining 06/dy by linear fitting of numerical data.

4, Conclusion

Based on the qualitative similarity of fundamental
physics of natural convection in models I and II, a theor-
etical prediction was made of the resonance frequency in
model I. The numerical solutions for the corresponding
non-oscillating thermal boundary conditions (& = 0)
were analyzed. The estimated frequencies of internal
gravity wave modes provided an improved prediction
tool for the resonance frequencies in model I, in com-

Table 1

parison to the previous attempts using scaling analyses
{1, 3].
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Comparison of numerical and theoretical estimations of the resonance frequency. The values in ( ) indicate the percentage errors

relative to the numerical results of Lage and Bejan [1)]

Pr Ra Resonance frequency, f,, scaled by x/H"

Numerical results Theoretical prediction, Theoretical prediction, Theoretical prediction,

of Lage and equations (1) and (2) equations (1) and (3) equation (5)

Bejan [1]
7.0 107 251.0 157.7 (—37.2) 120.5 (—52.0) 265.0 (+5.6)
7.0 10® 661.4 396.2 (—40.1) 302.6 (—54.3) 649.8 (—1.8)
7.0 10° 1506. 995.3 {—33.9) 760.1 (—49.5) 1614. (+7.2)

7 10¢ 41.83 54,45 (+30.1) 28.75 (—31.3) 40.31 (—3.6)

0.7 107 105.8 136.8 (+29.2) 72.23 (—31.8) 96.14 (—9.2)
0.7 10* 209.2 343.5 (+64.2) 181.4 (—13.3) 235.2 (+12.4)
0.01 10 8.000 9.953 (+23.4) 1.817 (~77.3) 4.798 (—40.0)

0.01 107 14.86 25.00 (+68.2)

4.564 (—69.3) 12.65 (—14.9)




